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UK Cryptosporidium hominis isolates have previously 
shown slight PCR fragment length polymorphism at mul-
tiple loci. To further investigate transmission, we conducted 
a case–control study and sequenced the GP60 locus from 
115 isolates. Nine subtypes were identifi ed; IbA10G2 pre-
dominated. Having a non-IbA10G2 subtype was signifi cantly 
linked to recent travel outside Europe.

Cryptosporidium hominis, a human-adapted species of 
the protozoan parasite Cryptosporidium, causes ≈50% 

of the reported cryptosporidiosis cases in the United King-
dom each year (1). Risk factors for C. hominis have been 
identifi ed as traveling abroad and changing diapers of chil-
dren (2). However, studies using multilocus fragment typ-
ing of mini- and microsatellite DNA markers have shown 
that C. hominis isolates from the United Kingdom are ge-
netically very similar (3,4), and no associations between 
C. hominis subtype and risk have been identifi ed (4). To 
explore whether a more detailed examination of genomic 
DNA could benefi t public health, we used sequence analy-
sis of the widely studied and highly variable GP60 gene to 
reexamine C. hominis isolates from a case–control study of 
sporadic cryptosporidiosis (2).

The Study
A total of 115 C. hominis isolates were collected and 

confi rmed during a case–control study of human cryptospo-
ridiosis in Wales and northwest England (2). To identify 
subtypes, we analyzed the DNA sequences of an ≈850-bp 
region of the GP60 gene encompassing the polyserine tract 
(variable numbers and forms of a repeating sequence of 3 
nucleotides coding for the amino acid serine) and the hy-
pervariable downstream region (5). We used a nested PCR 
protocol with primary PCR primers AL3531 and AL3535 

and secondary primers AL3532 and AL3534. PCR prod-
ucts were sequenced in both directions.

The microsatellite triplet codons were categorized ac-
cording to the number of trinucleotide repeats (TCA, TCG, 
or TCT) coding for the amino acid serine (6), and the no-
menclature was expanded for subtype family Ia to include 
the number of repeats (e.g., R1, R2) of the sequence AA(A/
G)ACGGTGGTAAGG after the microsatellite region 
(7). Sequence data for representative isolates were depos-
ited in GenBank (accession nos.  EU161648–EU161655, 
EF214734, and EF214735). We then investigated subtypes 
for relationships with reported exposures by using single-
variable analysis performed in SPSS 12.0 version (SPSS 
Inc., Chicago, IL, USA).

Of 115 C. hominis isolates, 14 were not typeable at the 
GP60 locus (12 did not amplify and 2 gave equivocal reac-
tions); typeability was 87.8%. Nine subtypes were identi-
fi ed but 92 (91.1%) typeable isolates were IbA10G2. Each 
of the other identifi ed types contained only 1 isolate mem-
ber except for IgA24, which contained 2. This resulted in a 
low discriminatory power of 0.171.

More persons with subtypes other than IbA10G2 had a 
history of recent foreign travel (5/9, 55.6%) than did those 
with IbA10G2 (27/92, 29.3%), although this was not sta-
tistically signifi cant (p = 0.1374 [Fisher exact test], odds 
ratio [OR] 3.01, 95% confi dence interval [CI] 0.59–16.20). 
However, all 5 case-patients with other subtypes report-
ed travel history outside Europe, 3 to Pakistan (subtypes 
IaA12R3, IaA22R2, and IaA30R3), 1 to Kenya (IaA25R3), 
and 1 to New Zealand (IgA24) while only 3 case-patients 
with IbA10G2 types were known to have traveled outside 
Europe (to Tunisia and Turkey) (Table 1). All those who 
reported travel within Europe had subtype IbA10G2.

Four case-patients who had not traveled outside the 
United Kingdom had non-IbA10G2 alleles, but with the 
exception of IgA24, these were different from the subtypes 
found in case- patients who had traveled outside Europe. 
The relationship between travel outside Europe and GP60 
subtypes was statistically signifi cant (p = 0.00008 [Fisher 
exact test], OR 37.08, 95% CI 4.76–303.65; Table 2). No 
other epidemiologic associations were present.

Conclusions
Although GP60 sequence typing had very low dis-

criminatory power for UK C. hominis isolates, our fi ndings 
are in agreement with previous fi ndings based on multiple 
loci that C. hominis appears to be highly conserved in the 
United Kingdom (3,4). DNA sequencing of a substantial 
proportion of the GP60 gene, including the microsatellite 
region, provides higher resolution data than investigating 
microsatellite length polymorphisms, which may mask 
differences in sequence (8); here, DNA sequencing facili-
tated identifi cation of a signifi cant link between subtype 
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and foreign travel outside Europe. Subtype IbA10G2 is 
very clearly predominant in the United Kingdom. Subtype 
family Ib and the IbA10G2 subtype have been reported in 
Europe both in sporadic cases and outbreaks (9–12) and 
occur worldwide (12). The conclusion of Cohen et al.  (11), 
that Ib is the predominant C. hominis allele associated with 
waterborne outbreaks, is explained if this is the most com-
mon allele causing human cryptosporidiosis in Europe, as 
it is in the United Kingdom, and is therefore predominant 
in human sewage.

In nonindustrialized countries, a greater variety of C. 
hominis subtypes have been reported (7,8,13,14). Of the 
3 isolates found in case-patients returning from Pakistan, 
IaA12R3 had been isolated from a patient from Nepal (Gen-
Bank accession no. AY167595); IaA22R2 and IaA30R3 had 
not been reported previously. Subtype IaA25R3 was found 
in a case-patient returning from Kenya and was homolo-
gous to a C. hominis reference strain (TU502) of Ugandan 
origin (GenBank accession no. XM_663000). Notably, of 
the 4 case-patients with non-IbA10G2 subtypes who did 
not report foreign travel, 1 had the IgA24 subtype, which 
matched an isolate from Northern Ireland (GenBank acces-
sion no. EF214734), and may well circulate in the United 
Kingdom; IaA23R4 was homologous to isolates from the 
United States (GenBank accession no. AF164504) and 
Canada (GenBank accession no. DQ192510); and IfA12G1 
had been identifi ed in Australia (12).

C. hominis is highly conserved in indigenous UK case-
patients, and subtypes other than IbA10G2 are linked to re-

cent foreign travel outside Europe. It is not possible to pre-
dict whether this apparent stability will remain or whether 
it will be infl uenced by international travel.
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Yes 27 5 See below 
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 Destination not known 1 0
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Total 91 9 100
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